

- High Accuracy Temperature Sensor
- 16 bit Resolution
- High Speed, low Response Time
- Low Power Consumption
- PWM Output
- Small TDFN8 Package

DESCRIPTION

The TSYS02P is a single chip, temperature sensor.

It provides factory calibrated data corresponding to the measured temperature.

The data is provided via PWM output.

The temperature range is -40°C ... +125°C while the resolution is 0.01°C.

The TDFN8 package provides smallest size and very fast time response.

FEATURES APPLICATIONS

High Accuracy ±0.2°C @ Temp.: -5°C ... +50°C

Adjustment of high accuracy temperature range on request

Low Supply Current < 420 μ A (standby < 0.14 μ A)

PWM Output

Small IC-Package TDFN8 2.5mm x 2.5mm

Operating Temperature Range: -40°C ... +125°C

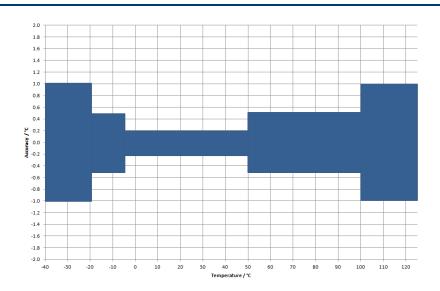
Industrial Control Replacement of Precision RTDs, Thermistors and NTCs Heating / Cooling Systems HVAC

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. And even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	VDD		-0.3		+3.6	V
Operating Temperature	Тор		-40		+125	°C
Storage temperature	Tstor		-55		+150	°C
ESD rating	ESD	Human Body Model (HBM) pin to pin incl. VDD & GND	-2		+2	kV
Humidity	Hum		Non condensing			

OPERATING CONDITIONS

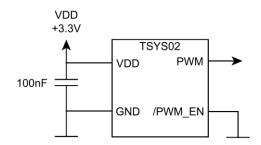

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Supply Voltage	V_{DD}	stabilized	1.5		3.6	V
Supply Current	I _{DD}	2 sample per second		36		μΑ
Peak Supply Current	I _{DD}	During conversion		420		μΑ
Conversion Time	T _{CONV}			43		ms
Measurement Frequency	F _{MEAS}			2		Hz
PWM Period	T _{PERIOD}		7.5	8.3	9.1	ms
VDD Capacitor		Place close to the chip	100nF			

OPERATIONAL CHARACTERISTICS

If not otherwise noted, 3.3V supply voltage is applied.

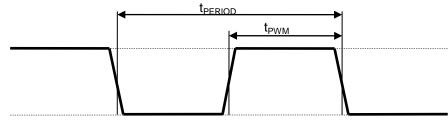
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Temp. Measurement Range	T _{RANG}		-40		125	°C
Accuracy 1	T _{ACC1}	-5° C < T < $+50^{\circ}$ C V _{DD} = 3.2V $-$ 3.4V	-0.2		+0.2	ů
Accuracy 2	T _{ACC2}	-20°C < T < $+100$ °C V _{DD} = 3.2V -3.4 V	-0.5		+0.5	°C
Accuracy 3	T _{ACC2}	-40°C < T < $+125$ °C V _{DD} = 3.2 V -3.4 V	-1.0		+1.0	°C
PSRR Power Supply Reject Ratio		$V_{DD} = 2.7 - 3.6$ T = 25°C, C = 100nF			0.1	°C
Temperature Resolution	T _{RES}				0.01	°C
Self Heating	SH₁	10 samples/s, 60s, still air			0.1	°C

ACCURACY


ANALOGUE TO DIGITAL CONVERTER

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Resolution				16		bit
Conversion Time	t _c			43		ms

DIGITAL OUTPUTS (PWM)


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output High Voltage	VOH			VDD		V
Output Low Voltage	VOL			0		V
Output Sink Current	IOL				40	μA

CONNECTION DIAGRAM

PIN FUNCTION TABLE

Pin	Name	Туре	Function
1	VDD	Power	Supply Voltage
2	/PWM_EN	Digital Input	Enable PWM Output (0 = ON)
3	PWM	Digital Output	PWM Output
4	VSS	Power	Ground
5 – 8	NC		Not connected / Do not connect

PWM OUTPUT

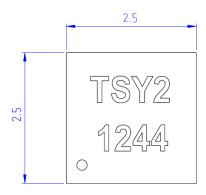
START UP

After power-up (VDD between 1.8V and 3.6V) TSYS02P needs at most 150ms for reaching idle state. During that time PWM output is in undefined state. Afterwards, TSYS02P starts measuring and provides data on PWM output.

TEMPERATURE CALCULATION

TEMPERATURE POLYNOMAL

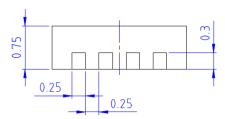
T /
$$^{\circ}$$
C = t_{PWM} / t_{PERIOD} x 175.72 - 46.85


EXAMPLE

 t_{PWM} : 4.15ms t_{PERIOD} : 8.30ms

```
T / °C = 4.15ms / 8.30ms x 175.72 - 46.85
T / °C = 41.01°C
```

DIMENSIONS


TOP VIEW

BOTTOM VIEW

SIDE VIEW

MARKING

Line	Description	Example
1	Product Name	TSY2
2	Pin 1 Dot, Date Code YYWW	1244

ORDER INFORMATION

The TSYS02 temperature sensor family compromises currently three different solutions.

Further customer specific adaptations are available on request.

Please refer to the table below for part name, description and order information.

Part Name	Description	Order Number
TSYS02D	Digital Temperature Sensor, TDFN8, I2C Interface	G-NIMO-003
TSYS02P	Digital Temperature Sensor, TDFN8, PWM Interface	G-NIMO-004
TSYS02S	Digital Temperature Sensor, TDFN8, SDM Interface	G-NIMO-005

EMC

Due to the use of these modules for OEM application no CE declaration is done. Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented. The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

DEFINITIONS AND DISCLAIMERS

- Application information Applications that are described herein for any of these products are for illustrative purpose only. MEAS Deutschland GmbH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunctions of these products can reasonably be expected to result in personal injury. MEAS Deutschland GmbH customers using or selling this product for use in such applications do so at their own risk and agree to fully indemnify MEAS Deutschland GmbH for any damages resulting from such improper use or sale.

联系方式

广东省深圳市南山区创业路怡海广场东座2407 邮编:518000 电话:+86 755 2641 9890 传真:+86 755 2641 9680

电子邮箱:sales@bill-well.com